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Abstract–In this paper we discuss the us,e of digital filtering

and spectrum estimation techniques for improving the effi-
ciency of the FD-TD algorithm in solving eigenvalue problems.

The great improvement of the efficiency of the method is dem-

onstrated by means of both numerical and measurement re-

sults. In addhion, several improvements to the present FD-TD

method for eigenvalue analysis are presented. These include the

analysis of opeu dielectric resonators and the extraction of the
resonant frequencies from the FD-TD results. The result for
the open dielectric resonator analysis is validated using mea-
sured data.

I. INTRODUCTION

T HE OPTIMIZATION of the performance of resona-

tors in microwave circuits requires accurate and effi-

cient methods for calculating the resonant frequencies and

the spatial distributions of the field. Various methods have

been developed to study the resonant frequencies of res-

onant structures. Most of them, such as,; the mode match-

ing method, integral equation method, and finite element

method, are carried out in the frequency domain [1].

The finite-difference time-domain (F D-TD) method has

been widely used for solving electromagnetic problems.

Resently, it has been used to solve eigenvalue problems

associated with resonator structures [2], [3] and to cal-

culate critical parameters for complex rnicrostrip antennas

[4], [5]. All of these results have shown the FD-TD

method to be a very powerful tool for eigenvalue analysis,

primarily because of two desirable attributes. First, it can

be applied to problems exhibiting a complex structure

which may be very difficult to solve using other analytical

or numerical methods. Second, only one computation is

required to get the frequency domain results over a large

frequency spectrum. However, this method has one sig-

nificant drawback, which is that it requires a very long

computation time for extracting the resonant frequencies

from the FD-TD results; for example, in the case of the

problem discussed in [2], the time iteration N has to be

as large as N = 216.

The main purpose of this paper is to introduce the use

of digital filtering and modern spectrum estimation tech-
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niques with the FD-TD method, as a means for overcom-

ing above limitation. By using numerical results, it will

be shown that modern spectrum estimation techniques can

reduce the time taken to solve a problem, such as that

discussed in [2], by one order of magnitude, without any

loss of accuracy in calculating the resonant frequencies.

It follows from this example, that, in general, the FD-TD

computational time for these types of problems can be re-

duced by one order of magnitude. In addition, several

other improvements to the method used in [2] are pre-

sented in this lpaper. These include the ability to analyze

open dielectric resonators, the technique for extracting the

resonator frequencies, as well as the calculation of the

field distribution, from the FD-TD results.

II. FD-TD METHOD FOR RESONATOR ANALYSIS

For ease of description, the method is described by re-

ferring to the generalized cylindrical shaped dielectric

resonator (DR.) in Fig. 1. This structure is rotationally

symmetric, Since TEolb modes are the most commonly

used for DR applications, only the TEO modes are dis-

cussed. The relevant form of Maxwell’s equations are

(1)

(2)

(3)

Using a central difference scheme similar to that used by

Yee [6], the abcwe equations can be discretized as

n+(l/2)(~,j)E*
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Fig. 1. A generalized cylindrical shape dielectric resonator.
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where i and j are space index and n is the time index.

The computation domain diagram is shown in Fig. 2.

The tangential electric field components are located at the

interfaces between different materials and on the outer

boundaries of the computation domain. The fields at the

interfaces between different materials can still be calcu-

lated using (4), if it is remembered that average of the

two dielectric constants, (Cl + e2) /2, has to be used in

place of c in the equation. Using a derivation similar to

that used in [7], it can be proved that, for the fields at an

interface between three media, the effective dielectric

constant becomes (e 1 + C2 + ~3) /3, and for four media,

it becomes (Cl + e2 + es + c1) /4.

The previous analyses given in [2], [3] are limited to a

consideration of a closed resonator, where the tangential
electric fields on the outer boundaries are forced to be

zero. Actually, by using the well developed absorbing

boundary condition (ABC) in conjunction with the FD-

TD method [8], the method can be extended so that it can

deal with the open structure problem. In this paper, Mur’s

first-order boundary condition [9] is used:

(i+;:)E=” (7)

where E represents the tangential electric field component

relative to the boundary wall and VP represents the phase

t z Observation point
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Fig. 2. FD-TD grids, the tangential electric field components are arranged
on the interface of different materials and on the outer boundaries of the
computation domain.

velocity of the field. This equation is easily discretized

using only field components on and just inside the mesh

wall, yielding the difference equation

&–vpAt
EL = E~:ll +

& + V, At(E&-l ‘EL-l) ‘8)

where EM represents the tangential electric field compo-

nent on the bounda~ and EM_ ~ represents the tangential

electric field component a distance of one node inside the

boundary. The other absorbing bounda~ conditions [8]

can be applied to improve the accuracy. But, according to

our experience, the first order ABC has sufficient accu-

racy to deal with high dielectric constant resonators.

To start the computation, the initial electric and mag-

netic fields are set to zero throughout the grid, except at

one selected point. Here the electric field is set to 1. This

unit impulse source will excite a large number of modes.

Using the above algorithm, Fig. 3(a) gives the computed

electric field in the time domain at the point of observa-

tion. The resonant frequencies can be obtained by taking

the Fourier transform of the computed time domain re-

sponse. The field distributions for any particular fre-

quency can be obtained by performing Fourier transform
at each point in the computation domain at that frequency.

With the objective of getting more accurate estimates of

the resonant frequency and field distribution than that have

been obtained in the past, the following procedure is put

forward.

The procedure to be followed is based on the signal

analysis of the time domain results obtained using the FD-
TD method. In this section, it is assumed that the se-

quence length of the FD-TD result {x(n)} is very long,

where x(n) is one of the field components. At an earlier

stage of the FD-TD method, the fast Fourier Transform

(FFT) algorithm is used to calculate the discrete Fourier
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Fig. 3. (a) Time domain result directly obtained from the FD-TD algo-
rithm. (b) Its corresponding DFT spectrum. (c) Normalized amplitude
spectrum of Fourier transform of long sequence and de8ampled shorter se-
quence.

transform (DFT) of {x(n)} to get the spectrum, X(~), of

x(t), where x(n) = x(t) I~=. & and At isthetime step used

in the FD-TD algorithm. For some applications [10], this

method is not very efficient and it does not have sufficient

accuracy. This is because the N/2 values of DFT are uni-

formly distributed over a very large frequency bandwidth,

extending from O to f, /2 Hz, where j, = 1 /At is the sam-

pling frequency, and because the frequency resolution,

which is given by

1
Af=—

N“ At’
(9)

where N is the length of the sequence {x(n)}, is too coarse

to accurately determine resonant frequencies. In practice,

only the lower part of the band is of interest. One method

that has been suggested here is to do the numerical inte-

gration of Fourier Transform of x(t) directly in the inter-

ested frequency band

~

m

x(f) = x(t) exp ( –j2z-jl) dt
o

sNAt

= x(f) exp ( –j2mji) dt
o

N–1

= ~~ox(n) exp (-j2m-- At) At. (lo)

The advantage of this method is that it removes ambigu-

ities sometimes encountered with the discrete Fourier

Transform, due to narrowband signal components with

center frequencies that lie in the gaps between the N/2

frequency points evaluated with the DFT. It will be shown

in the following that, when FD-TD method is used for

resonator analysis, the time domain results are signals

which consist of many narrowband signal components.

The accuracy of calculating the spectral peaks, i.e., the

field distribution, is also enhanced by using (10).

The efficiency of calculating (10) can be greatly im-

proved by using the following method. Instead of using

the original sequence {x(n) } obtained using the FD-TD

result, a new sequence {xl (n)} is used in (10), which is

obtained by desampling the {x(n)} at a certain rate. The

desampling rate is determined by the ratio of the half sam-

pling frequency f, /2 to the maximum frequency fm,X of

the long sequence {x(n) }. Because {xl (n)} is much shorter

than the original sequence {x(n)}, the time required to

analyze the new time domain sequence can be greatly re-

duced, with no reduction in the accuracy of the result.

The theory which supports this treatment is Nyquist sam-

pling theorem [11].

In order to illustrate the method clearly, let us refer to

the dielectric resonator problem in Fig. 1. In Fig. 3(a) is

given the time domain results for the observation point

shown in Fig. 2. This result was obtained using the FD-

TD method. The DFT spectrum corresponding to this re-

sult is given in Fig. 3(b), The parameters used in the cal-

culation are

Dimension: D = 6.26 mm, L = 4.22 mm,

L1/L = 0.943 mm, L2/L = 0.166 mm

e,l = 36.2, 6,2 = 9.5
Mesh dimensions in dielectric region: 24 Az X 18 Ar

Az = 0.17583 mm, Ar = 0.175824 mm

At = 0.65(Az + Ar) /(2c), c is the speed of light in

free space
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According to the Nyquist theorem and from the spectrum

in Fig. 3(b), it follows that the original sequence {x(n)}

is a much over-sampled time domain signal, and that a

new sequence {xl (n) } can be obtained by using a desam-

pling rate of about 10. In Fig. 3(c), the solid line gives

the result obtained by appling (10) to the long sequence,

and the dashed line gives the result obtained by applying

(10) to the decimated sequence {xl (n)}. The two results

are exactly the same and therefore overlap in Fig. 3(c).

After getting the much shorter sequence {xl (n)}, the

numerical integration of (10) can also be calculated using

a FFT program in the following manner. First, pad zero

values to the decimated sequence {xl (n)}, then apply FFT

to the padded sequence. The number of padded zeros are

determined by the frequency resolution requirement.

Another phenomena that needs some explanation is why

the results, {x(n) }, obtained from the FD-TD analysis,

which can be thought as a unit impulse response, only

contain components at the lower end of the frequency

spectrum. The answer lies in the dispersion that is intro-

duced to the results by the FD-TD algorithm itself [12],

[13]. Another simpler explanation to this phenomena is

that the wavelength of the waves which can freely prop-

agate in the FD-TD grid should be at least two grid spaces.

Otherwise, the grids are too coarse to describe (support)

wave movement, thereby preventing waves from propa-

gating on the FD-TD grid. The corresponding cutoff fre-

quency is the maximum frequency of the FD-TD time do-

main result, which is equal to about &X = v/(2 Ah),

where v is the speed of light in the dielectric materials

and Ah is the space step (where a uniform grid is as-

sumed). For dielectric resonator analysis, because most

of the energy is centered in the material which has the

largest dielectric constant, the velocity v = c/G

should be used to determine the maximum frequency of

the time domain result of FD-TD method, where c is the

velocity of light in free space. Once the maximum fre-

quency &X is known, the desampling rate can be deter-

mined.

III. USE OF DIGITAL FILTERING AND MODERN

SPECTRUM ESTIMATION TECHNIQUES WITH FD-TD

METHOD

The objective of this section is, based on a much shorter

sequence {X2 (n) } obtained directly from the output FD-

TD algorithm, to use digital filtering and modem spec-

trum estimation techniques to extract the resonant fre-

quencies of the dielectric resonator. Suppose {X2 (n)} is

the sequence consisting of the first two thousand data

points in {x(n)}. The DFT spectram of {X2(n)} is shown

in Fig. 4(a). After desampling {xz (n)}, using a desam-

pling rate of ( fi/2) /&X, which is about 10, we get a
sequence {X3 (n) } whose DFT spectrum is shown in Fig.

4(b). Because we are interested in the lower frequency

band, we further process the signal {X3 (n)} by using a

decimating filter to get {X4(n)}, whose DFT spectrum is

shown in Fig. 4(c). In applying the decimating filter [14],

we first pass the data through a low-pass digital filter,

then, according to the maximum frequency of the filtered

output, we desample the filtered output to get the final

output signal. In order to improve the accuracy of esti-

mating the resonant frequencies of the first few modes,

we further process {X4 (n)} with a low-pass filter and get

{ Y(n)}, Whose DFT spectrum is shown in Fig. 4(d). In
all cases, ninth order Butterworth filters are used to carry

out the filtering. In the filtering process, the data are fil-

tered in both the forward and backward directions, thereby

eliminating all phase distortion and minimizing filter

startup transients [15]. In the next phase of the work we

carry out a search for a good high resolution spectrum

estimator, with which to extract the resonant frequencies

from the data { y(n)}.

From the behavior of the spectrum of {x(n)}, based on

the results given in Fig. 3c, it seems reasonable to assume

that { y(n)} is composed of sinusoidal components. One

of the best kinds of methods for estimating the frequen-

cies of sinusoidal components is the multiple signal clas-

sification (MUSIC) method [16] -[1 8]. This method be-

longs to the eigendecomposition-based class of super-

resolution spectrum estimation methods. The term

“super-resolution” refers to the fact that this class of

methods have the ability to surpass the limiting behavior

of classical Fourier-based methods. There are a number

of reasons for our choosing the MUSIC algorithm from

amongst this class of methods. These are: (i) it is easy to

implement, (ii) it provides good performance, (iii) it is

used as a bench mark in the field of signal processing, and

(iv) it provides a good introduction to modem spectrum

estimation.

The general aim of eigendecomposition-based methods

is to exploit the eigenvalue decomposition of the corre-

lation matrix of a signal consisting of p uncorrelated com-

plex sinusoids and additive complex white noise. The sig-

nal is:

y(n) = ,$1 Ai exp (j2~_n At + @i) + ~(n) (11)

where the amplitudes {Ai } are real-valued positive con-

stants, the initial phases {Oi } are independent random

variables distributed uniformly on [0, 2T], and the fre-

quencies { ~ } are distinct, At is the sample interval of the

signal { y(n)} and {w(n)} is complex white noise with

zero mean and variance a 2. Although here we discuss fre-
quency estimation for p complex sinusoids in complex

white noise, the same methods generally apply to real sin-

usoids in real white noise if p is chosen to be twice the

number of real sinusoids. The autocorrelation function of

the above signal is

r(k) = E[ y(n) y* (n – k)]

= ~ A? exp (j2tr-k At) + 02 d(k) (12)
,=]

where E denotes the expectation operator and * denotes

complex conjugate. The corresponding (M + 1) x (M +



BI et al,: FAST FINITE-DIFFERENCE TIME-DOMAIN ANALYSIS OF RESONATORS 1615

1) ensemble-averaged autocorrelation matrix

I 1

r(0) r(1) . “ “ ,r(kf)

r(–1) r(0) . . . ,r(itl – 1)

. . . .

R= “ ‘ (13)
. . . . .

. . . . .

r(–kf) r(–M + 1) . “ . r(0)

for M>pis

R = SDSH + 021 (14)

where 1 is the (M + 1) x (M + 1) identity matrix, the

rectangular matrix S is the (M + 1) x p sinusoidal signal

matrix defined as

s = [s~, Sj, “ “ “ Sp]

1 1

or more explicitly

s~v~ ‘= 0, i==pi-l, ”””, M+l

1=1,2, ”””, p (21)

where the vector sl constitutes the lth column of matrix S.

A fundamental property of the eigenvectors of a cor-

relation matrix is that they are orthogonal to each other.

Hence, the eigenvectors VI, “ o “ , VP span a subspace that

is the orthogonal complement of the space spanned by the

eigenvectors VP~ 1, “ “ . , v~ + 1. Accordingly, it follows

from (21) that

span {sl, I “ “ , SP) = span ~vl, ‘ ‘-” ‘, VP} (22)

The span {sl, “ . s , SP} refers to a subspace that is de-

fined by the set of all linear combinations of the vectors

Sl, ”””, SP. The span {vl, . 0 0 , VP} is similarly defined.

—

. . . 1-

exp ( –j2:r-l At) exp ( –j2@2 At) . . . exp ( –j27rfP At)

exp ( –j2n--l 2 At) exp (–j2T,22 At) “ . 0 exp ( –j2x-& 2 At)

. . . . .

. . . .

. . . .

exp ( –j2rfJ M At] exp ( –j2Tfz M At) , . . exp ( –j2~fPM At)

(15)

-1

D is the p X p correlation matrix of the sinusoids, and ~

denotes conjugate transpose. Note that the lth column of

the matrix S, namely sl is a signal vector of dimension (M

+ 1) carrying the frequency information of the lth com-

plex sinusoid. Let h, z h2 o “ “ > h~ + ~ denote the ei-

genvalues of the correlation matrix R’, and iv, > Vz . “ .

> vM + 1 denote the eigenvalues of SDS’, respectively.

Since S is a full rank matrix and D is positive definite, it

follows [16] that

[

v, + 02, ~=1, ....p
Al = (16)

~2, i=p+l, .”. ,M+l

Let v,, V2, “ o “ , v~ +, denote the eigenvectors of the

correlation matrix R. All the (M + 1 – p) eigenvectors

associated with the smallest eigenval ues of R satisfy the

relation

Rvi = 02V~, i=p+l, ..”, lll+l (17)

or, equivalently,

(R – ~2Z)vi = 02 i=p+l, .””, i%l+l (18)

Using (14), the above equation can be rewritten as

SDSHvi = O, i=p+l, ””. ,M+l (19)

It readily follows that

sHv~ = o, i= P+l, . . ..M+l (20)

.

Based on the above discussions, we can conclude the

following important property of the eigenvalue decom-

position of the (M + 1) x (M + 1) correlation matrix R
of the signal defined in (11), which is

The space spanned by the eigenvectors of R consists

of two disjoint subspaces. One called signal sub-

space, is spanned by the eigenvectors associated with

the p largest eigenvalues of R. The second subspace

called the noise subspace, is spanned by the eigen-

vectors associated with the (M + 1 – p) smallest

eigenvalues of R. These two subspace are the or-

thogonal complement of each other and they satisfy

the (21) and (22).

Various eigendecomposition-based methods exploit the

above property, i.e. the existence of two subspaces in dif-

ferent ways. The approach used in the MUSIC algorithm

is to estimate the frequencies of the complex sinusoids by

searching fcm those sinusoidal signal vectors S1 that are

orthogonal to the noise subspace. This follows from (21).

In practice, the implementation of all these different

methods uses the sample estimation of the ensemble-av-

eraged correlation matrix R. One of the best estimations

[17] for R i:$

R=
1

2(K – M) +
(23)
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Fig. 4. Digital filtering processing of the FD-TD time domain result. (a)-
(d) DFT spectrums.

where K is the sequence length of { y(n)} and @ is peaks in the expression

‘MUSIC(~) = M+ 1
1

* = AHA (24) (26)

where AH is defined as

AH .

-y(M) ““”y(K–l) y*(o) “ “ “ y*(K– M+ l)-

y(M–l)”””y(K–2) y*(l) “ “ “y*(K– M+2)

. . . . . . . . .

. . . . . . . .

,,. , . . . .

-y(o) ““”y(K– M+l) y*(M) ”””y*(K–1)

(25)

Let @l, 02, “ “ “ , fi~+l denote the eigenvectors of the where the frequency scanning vector S(~) is defined by
estimate R. Owing to the presence of uncertainties in the

eigenvector estimates, 01, 02, 0 “ “ , vAM+ 1, arising from S(~) = [1, exp (–j27r-- At), . . . , exp (–j2@J14 At)]T

the limited number of samples that are available in prac-

tice for deriving the estimate, R, the orthogonality rela-
(27)

tions of (21) no longer strictly hold. Accordingly, the where T denotes transpose. It should be pointed out that

MUSIC algorithm bases its estimates of the frequencies MUSIC spectrum ~~usIc ( ~) is not a true power spectrum

of the complex sinusoids in the data vector on locating the because it does not preserve the power of the signal nor



BI etal.: FAST FINITE-DIFFERENCE TIME-DOMAIN ANALYSIS OF RESONATORS 1617

can the autocorrelation sequence be recovered by Fourier

Transforming the frequency estimator.

The MUSIC algorithm can be summarized below

1.

2.

3.

4.

Set up data matrix A using (25) and calculate the

estimate R of the (M + 1) x (ill + 1) correlation

matrix using (23). Computer the the eigenvalues and

eigenvectors of R.

Given that there are p complex sinusoids in the in-

put signal, with p s M, classify the eigenvalues

into two groups. One consisting (of the p largest ei-

genvalues and the other consisting of the (M + 1 –

p) smallest eigenvalues. The first group spans the

sample signal subspace, the second group spans the

sample noise subspace.

Use the eigenvectors associated with the second

group to calculate the MUSIC spectrum (26). De-

termine the frequencies of the ~omplex sinusoids by

locating the spectral peaks of Y~usIc ( ~).

In place of procedure 3, the frequencies can also be

determined by using root-MUSIC [19].

IV. NUMERICAL RESULTS

Using the above MUSIC algorithm, the signal { y(n)]

which was obtained after filtering processing in the last

section is analyzed. The result is shown in Fig. 5. The

dashed line was obtained by applying a Fourier transform

(10) to a very long FD-TD sequence, corresponding to

20000 time iterations in the FD-TD algorithm. The dot-

ted curve gives the result from Fourier processing (10) of

the first two thousand points in the former sequence. This

shortened sequence corresponds to 2OC1Otime iterations in

the FD-TD algorithm. From this curve we see that, for

short data records, the resonant frequencies cannot be ac-

curately estimated using the Fourier transform. Biases oc-

cur in the locations of the first and fourth resonant fre-

quencies and the second and third resonant frequencies

are missing altogether. The solid line gives the result of

application of digital filtering and the MUSIC spectral es-

timation technique to the shorter data. In the MUSIC al-

gorithm, the data length of { y(n)}, K, was equal to 100,

the order of the correlation matrix M + 1, was determined

by the relation M = 2K/3. The accuracy of the method

increases with increasing M [16]. However, M + 1 should

not be larger than the number of data points. The choice

for the order of the signal subspace, p, is ‘based on the

eigenvalue spectrum of R. For our example, p was equal

to 21. When p was changed from21 to a higher value, we

still got accurate frequency estimates, This suggests that

the method is robust. Comparing the solid and dashed

lines, it is seen that the same order or iiccuracy is obtained

in the resonant frequency estimation by applying signal
processing and spectral estimation to, a short data set as

that obtained by applying a Fourier transform to a much

longer data set.

A semi-open dielectric resonator coupled to a micro-

strip substrate (Fig. 6) is also studied. The parameters

used for this analysis are

Frequency GHz

(a)

Frequency GHz

(b)

Fig. 5. Resonant frequency estimation using different methods. Dashed
line: 20 000 iterations and using Fourier integration (10). Dotted line:
2000 time iteratiuns,and using Fourier integratiori (10). Solid line: Using
2000 time iteraticms m FD-TD algorithm and using digital filter processing
and MUSIC method.

‘Sgro~n~ I
Fig. 6. Semi-open dielectric resonator on a microstrip substrate.

Dimension: D = 11.06 mm, L = 4.99 mm,

L; = 1..59 mm, L~ = 3.18mm

evl = 35.’76, e,2 = 2.2

Dielectric region: 15 Az X 18 Ar

Az = 0.33267 mm, Ar = 0.325294 mm
At = O.65(Az + Ar) /(2c), c is the speed of light in

free space

The calculated and measurement results are given in Ta-

ble I. In the calculation, the resonant frequencies are de-

termined by the method presented in this paper, where
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TABLE I
RESONANTFREQUENCIESFOR THE TE013 MODE OF

A SEMI-OPEN DR

L’ FD-TD Results Measured Results
(mm) (GHz) (GHz)

1.59 4.9680 4.9832
3.18 4.7770 4.7918

only 2000 time iterations are used in the FD-TD calcu-

lation. For the experimental results, the DR was mounted

on a substrate, and the measurements were carried out

with an HP8510B network analyzer.

V. CONCLUSIONS

There are three main results coming from the present

study of the FJ1-TD method. Digital filtering and modem

spectrum estimation techniques were successfully incor-

porated with the FD-TD method as a means of improving

its efficiency for carrying out eigenvalue analysis. The ef-

ficiency and validity of the method are demonstrated us-

ing both numerical and measured results. Another rela-

tively new spectrum estimation method, which is called

T~omsort’s multiple-window-method (MWM) [20], was

also tested with ~D-TD data. The same good frequency

estimates were obtained using MWM. The second out-

come of this research was the application of signal anal-

yses to the time domain data obtained using the FD-TD

algorithm. lt has been shown that the FD-TD time domain

signal for dielectric resonator analyses is much over sam-

pled. The data that needs to be retained for later process-

ing can be greatly compressed, without degrading the ac-

curacy of the analysis. This conclusion is valid when the

~11-Tll method is used to analyze microstrip components

and antennas. h these latter cases, the maximum fre-

quency of time domain result, ~max, which sets the desam-

pling or compressing rate, is not determined by the cutoff

frequency of the FD-TD algorithm itself, but rather by the

maximum frequency of the excitation gaussian pulse. Ac-

cording to our experience, for the analysis of microstrip

antennas and components [4], [5], the data from the

l?13--Tl3 results can be compressed by one order of mag-

rtitude. So, based on this conclusion, both the memory

requirements for the ~D-TD time domain results and the

time h takes for processing the data can be reduced by at

least one order of magnitude. The third result that was

demonstrated by this research is that good results can be

obtained by using absorbing boundary conditions when

applying the FD-TD to open dielectric resonators. The

validity of the analysis was demonstrated by a comparison

of measurements and calculated results. All of the above

conclusions are applicable to other time domain methods,

such as the Transmission Line Matrix method.

In conclusion, it should be mentioned that signal pro-

cessing and spectrum estimation techniques can greatly

improve both the capability and the efficiency of the time

domain methods. This point has been reinforced by sev-

eral papers [2 1]– [26], where the authors have to greater

or less degree drawn on signal processing techniques to

improve the performance of their numerical algorithms.
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